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Abstract

Replacing overexposed or dull skies in outdoor photographs is a desirable photo manipulation. It
is often necessary to color correct the foreground after replacement to make it consistent with the new
sky. Methods have been proposed to automate the process of sky replacement and color correction.
However, many times a color correction is unwanted by the artist or may produce unrealistic results.

Style similarity is an important measure for many applications such as style transfer, fashion search,
art exploration, etc. However, computational modeling of style is a difficult task owing to its vague
and subjective nature. Most methods for style based retrieval use supervised training with pre-defined
categorization of images according to style. While this paradigm is suitable for applications where style
categories are well-defined and curating large datasets according to such a categorization is feasible, in
several other cases such a categorization is either ill-defined or does not exist.

In this thesis, we primarily study various image representations and their applications in understand-
ing visual style and automatic background replacement. First, we propose a data-driven approach to
sky-replacement that avoids color correction by finding a diverse set of skies that are consistent in color
and natural illumination with the query image foreground. Our database consists of ∼1200 natural im-
ages spanning many outdoor categories. Given a query image, we retrieve the most consistent images
from the database according to L2 similarity in feature space and produce candidate composites. The
candidates are re-ranked based on realism and diversity. We used pre-trained CNN features and a rich
set of hand-crafted features that encode color statistics, structural layout, and natural illumination statis-
tics, but observed color statistics to be the most effective for this task. We share our findings on feature
selection and show qualitative results and a user-study based evaluation to show the effectiveness of the
proposed method.

Next, we propose an unsupervised protocol for learning a neural embedding of visual style of images.
Our protocol for learning style based representations does not leverage categorical labels but a proxy
measure for forming triplets of anchor, similar, and dissimilar images. Using these triplets, we learn a
compact style embedding that is useful for style-based search and retrieval. The learned embeddings
outperform other unsupervised representations for style-based image retrieval task on six datasets that
capture different meanings of style. We also show that by fine-tuning the learned features with dataset-
specific style labels, we obtain best results for image style recognition task on five of the six datasets.

To the best of our knowledge, ours is the first work that provides a comprehensive review and eval-
uation of style representations in an unsupervised setting. Our findings along with the curated outdoor
scene database would be useful to the community for future research in the direction of sky-search and
sky-replacement.
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Chapter 1

Introduction

The primary objective of this thesis is to study various image representations and their applications
in understanding visual style, image retrieval, image recognition and background replacement. In this
chapter, we describe the motivation of our research, use of image representations in understanding
visual style and automatic background replacement. We then describe our contributions followed by the
organization of our thesis work.

1.1 Motivation

Background replacement: With the ubiquity of smart phone cameras, photography has become a de-
mocratized hobby with millions of photos uploaded to social media platforms like Instagram, Flickr,
Facebook every day. Along with this comes the need for sharing perfect photographs, however, the cap-
tured shots are often unattractive due to undesirable backgrounds, occlusions, poor lighting or exposure,
motion blur, lack of smile, presence of eye blinks, etc. In recent years, many methods have been pro-
posed for a number of automatic photo enhancements. This thesis focuses on the problem of automatic
sky-replacement.

Sky is often the hardest part of the scene to perfect in outdoor photography. Depending upon the
geographic location and weather conditions, sky could persistently be gray and dull, or too bright. Even
when the sky is perfect blue with white clouds and looks beautiful to the naked eye, it most often gets
washed out in a single exposure shot captured with a standard smart-phone camera. Professional out-
door photographers often prefer the golden hour (when sun is closer to the horizon) or use specifically
designed filters and polarizers to overcome this problem. Multi-exposure (HDR) photography can alle-
viate this problem to some extent, however, not much can be done if at the time of capture sky is just
dull.

Professional digital artists perfect the bad-sky photographs by manually replacing the original
sky with a desirable one and performing a series of interactive corrections to make the sky and the
foreground consistent with each other while keeping the final composite ‘plausible’. This is a non-trivial
and time consuming edit that is too cumbersome for a naı̈ve user to perform. Recently Tao et al. [37]
proposed an automatic method for sky-replacement that performs semantic-aware color transform

1



Figure 1.1: For a query image with a dull sky (left), examples of consistent (middle) and inconsistent
(right) sky replacements.

on the foreground to achieve natural looking composites. However, color-correction is not always
desirable. Hence, we propose a different approach to sky-replacement that avoids or minimizes the
need for post-replacement color corrections[27].

Visual Style: In visual arts, style is used as a primary apparatus to relate, organize and describe art-
works. However, understanding of style is highly contextual and vague. Depending on the context,
sense of style is attributed to time period, location, culture, artist, technique, school of design, modality,
etc. depicted in Figure 1.3 1. A highly subjective construct like style is hence, difficult to model com-
putationally. In the context of computer vision, Karayev et al. [17] presented one of the early works for
image style recognition with multiple datasets of photographic and painting images with different types
of visual style categorizations such as photographic techniques (Macro, HDR), moods (Serene, Melan-
choly), themes (Vintage, Romantic, Horror), artistic movements (Renaissance, Post-modern). Later,
Wilber et al. [48] presented a large dataset of contemporary artworks – the ‘Behance Artistic Media
Dataset’ (BAM) with crowd-sourced labels for media, emotions, and objects.

The style of an image, a photograph or art plays a very important role in how it is perceived and
felt by the viewer. A beautiful piece of art form can generate happy or cheerful emotions within us,
on the other hand a dull image may cause the viewer to be pensive or reflective. One may contrast the
different artistic styles, painting techniques of different painters, different art forms or even different
artistic time periods. Art experts may easily describe to us how an artistic piece by Monet may be
very different from one by Van Gogh based on colors, brush strokes and emotions (see Figure 1.2). In
recent times, apps like Prisma2 (which transforms an image into an artistic effect) have gained huge
popularity, which is nothing but a deep convolutional neural network performing style transfer.

Implicit vs Explicit Style: Convolutional Neural Networks (CNN) are found to be very useful for gain-
ing an implicit understanding of images from vast amounts of data for many computer vision tasks.
With availability of these datasets and advances in neural learning, developing methods for computa-
tional understanding of style is becoming an interesting possibility.

Present methods related to style based representations can be divided into two categories - implicit
and explicit. Unsupervised style transfer methods [7, 8] model style implicitly as intermediate feature
representations learned from an unrelated supervised learning task such as object recognition. Style, in

1Note: The images shown in the figure are part of the BAM [48], Wikipaintings [17], Flickr [17] and AVA Style [17, 26]
datasets.

2https://prisma-ai.com/
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Figure 1.2: An example of paintings by two different artists. Left: Water Lilies by French artist Monet,
Right: Dutch artist Van Gogh’s Cafe Terrace at Night

this context typically describes the visual ‘look and feel’ (texture, tone, and colors) of an image. These
methods leverage Gram matrix features which capture the correlation among feature maps extracted
from the many layers of a deep CNN (like VGG-19 [33]), typically pre-trained for object classification
on a very large dataset like ImageNet [5]. On the other hand, the popular paradigm in computer vision
community for explicit style understanding is to treat it as a supervised classification problem. Such
methods generally use large datasets with a fixed set of style labels to train a neural network for the
style classification task and use the learned feature maps for style representation [3, 4, 11, 17, 48].
The representations learned under this paradigm are effective and efficient for task-specific retrieval
but have practical limitations in terms of generalization and scalability, the biggest one being the need
for manual curation of large training data. This entire process is not only expensive and inefficient,
but also ill-suited for a subjective attribute like artistic style where expert annotations are limited to
a few significant works of art, like famous paintings or gallery displays. In contrast, Gram Matrix
features are readily computable for any new dataset and provide a specific measure of style disentangled
from content to some degree, but it is an inefficient representation for search and retrieval due to high
correlation and very high dimensionality.

One of the key motivations of this thesis is to investigate the quality of understanding of style that
can be achieved by an unsupervised approach which does not rely on categorical labels of style.

3



Graphite

M
ed

iu
m

E
m

ot
io

n
Te

ch
ni

qu
e

Ti
m

e 
P

er
io

d

Watercolor Vector Art Oil Paint

Happy Peaceful Scary Gloomy

Early Renaissance
(Late 13th to early 

14th century)

Late Renaissance - 
Mannerism 

(Early 16th century)

Baroque 
(Early 17th century to 

mid 18th century)

Art Nouveau - 
Modern

(Late 19th century)

HDR NoirLong Exposure Depth of Field

Figure 1.3: Examples of image style categorization with different meanings of style. Each row corre-
sponds to a category based on a particular understanding of style.
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To summarize, the key motivations of this thesis are (i) to develop a method for automatic sky-search
and sky-replacement without the need for post-replacement color corrections, and (ii) to investigate the
quality of understanding of visual style which can be achieved by an unsupervised approach which does
not rely on any categorical labels of style.

1.2 Thesis Overview

1.2.1 Automatic Sky Search and Replacement

We develop a method for automatic sky-replacement without the need for post-replacement color
corrections. Our approach is data-driven and centered around the idea of ‘compatible’ sky-search. Given
a query image with a problematic sky, our method first finds images with similar foregrounds and natural
illumination. It then creates candidate composites by replacing the query image sky with the retrieved
image skies and ranks the composites based on realism and diversity. The user is finally presented with
the top-k candidate composites as replacement outcomes without color transfer thereby retaining the
natural color composition of the foreground in the original image. We demonstrate the effectiveness of
our method with qualitative results and a comprehensive user study. Figure 3.2 summarizes the proposed
system with a block diagram.

For retrieving compatible yet useful images, we curated a dataset of 1246 outdoor images span-
ning many outdoor categories with interesting skies from ADE20K dataset [54] and the dataset of [38].
To achieve compatible sky-search, we use an ensemble of hand-crafted features such as Color Statis-
tics (Correlated Color Temperature (CCT), Luminance, and Saturation histograms), GIST [25], Bag of
Words[34], and natural illumination statistics [20] (represented as a probability map of sun position in
the sky), as well as CNN features (pre-trained). These features encode rich information about color
distribution, structural layout, semantics, and natural illumination. We finally select the color statistical
features, as we found based on an ablation study that the composites produced using the retrieval results
with these features were most realistic. We evaluate the composite images using RealismCNN [55] –
a discriminative model trained to predict realism of an image. Section 3.2 explains the data collection,
feature selection, and re-ranking based on realism and diversity in detail.

1.2.2 Understanding Visual Style

We wish to examine the quality of understanding of visual style which can be achieved by an un-
supervised approach that does not rely on any categorical labels of style. To this effect, we evaluate
state-of-the-art representations and their variants for style-based retrieval. We further propose a pro-
tocol for unsupervised learning of style representation by leveraging a proxy measure that provides a
loose grouping of images. Our proxy measure is based on Gram matrix features popularized by style
transfer methods. These features capture the ‘look and feel’ of an image by measuring the correlation
among feature maps produced by different convolutional layers of a CNN and hence are a good choice
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a.) b.)

c.) d.)

FC2 4096-D Gram 4096-D

B-CE 256-D B-Tri 256-D

Figure 1.4: t-SNE [41] visualizations of BAM dataset images based on following feature representa-
tions: (top row) FC2 features and PCA-reduced Gram features computed from pre-trained VGG19,
(bottom row) embeddings learned using our protocol. It can be observed that using triplet loss (B-
Tri) further reinforces the stylistic similarity in comparison to other features (refer to Table 4.1 and
Figure 4.1 for more details on the representations).
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for discerning different visual styles. We train a Siamese CNN [45] for learning a style embedding that
is relevant for style based search and retrieval. However, instead of leveraging the style class labels spec-
ified for a dataset, we do this in an unsupervised fashion for many datasets. We first divide a dataset into
k clusters using Gram matrix features and then use the cluster labels for learning the embedding by (i)
directly minimizing a cross-entropy loss for cluster label classification, and (ii) minimizing a triplet loss
for maximizing the distances between stylistically (look and feel wise) similar and dissimilar samples.
The training with a triplet loss further reinforces the stylistic similarity which is depicted by the t-SNE
[41] visualizations in Figure 1.4. This is of large interest as the unsupervised protocol can be used on
unlabelled (no supervision) data for learning stylistically useful representations and help understand a
highly subjective concept like style (look and feel) better.

1.3 Contributions

In this thesis, we propose a data-driven approach to sky-replacement that avoids color correction
by finding a diverse set of skies that are consistent in color and natural illumination with the query
image foreground. Given a query image, we retrieve the most consistent images from a database of
∼ 1200 natural images spanning many outdoor categories, according to L2 similarity in feature space
and produce candidate composites. The candidates are then re-ranked based on realism and diversity.
We used pre-trained CNN features and a rich set of hand-crafted features that encode color statistics,
structural layout, and natural illumination statistics, but observed color statistics to be the most effective
for this task. We share our findings on feature selection and show qualitative results and a user-study
based evaluation to show the effectiveness of the proposed method.

Also we propose an unsupervised protocol for learning a neural embedding of visual style of images.
The proposed protocol does not leverage categorical labels but a proxy measure for forming triplets of
anchor, similar and dissimilar images. We use these triplets to learn a compact style embedding that
is useful for style-based search and retrieval. The learned embeddings outperform other unsupervised
representations for style-based image retrieval task on six datasets that capture different meanings of
style. We also show that by fine-tuning the learned features with dataset-specific style labes, we obtain
best results for image style recognition tasks on five of the six datasets.

To summarize, the following are the key contributions of this thesis:

• We present a novel pipeline for compatible-search based sky-replacement that is a useful alterna-
tive or prelude to automatic color transfer based methods.

• We curated a large database of outdoor images with interesting skies and evaluated usefulness of
a large number of features (both hand-crafted and deep learned) for this task.

• We propose an unsupervised protocol for learning a deep neural embedding of visual style of im-
ages by leveraging a proxy measure that provides a loose grouping of stylistically similar images.
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• We present a comprehensive comparison with other unsupervised frameworks for image style rep-
resentation and evaluate the effectiveness of the learned embedding for retrieval and recognition
tasks on a variety of datasets, including 2 new datasets. We show that our the proposed approach
achieves best overall results across datasets for the retrieval task and best overall results on 5 out
of 6 datasets for the recognition task, when compared with several baselines.

To the best of our knowledge, ours is the first work that provides a comprehensive review and eval-
uation of style representations in an unsupervised setting. Our findings along with the curated outdoor
scene database would be useful to the community for future research in this direction.

1.4 Thesis Workflow

This thesis comprises of 6 main chapters. Chapter 1 discusses the motivation of the problem being
solved, provides an overview to visual style, implicit vs explicit style and automatic sky search and
replacement, and finally summarizes the key contributions of the thesis.

Chapter 2 gives an overview of the prior work on methods for automatic sky-search, sky-replacement
and realistic image compositing techniques, representations used for automatic style transfer, supervised
style classification methods and protocols for automatic discovery of image styles.

Chapter 3 explains the proposed method for the task of color consistent sky search and replacement.
Chapter 4 discusses the proposed method for learning unsupervised image style embeddings for the

tasks of retrieval and recognition.
Chapter 5 provides additional results in the form of qualitative results, dataset details, confusion

matrices, feature visualizations and some additional plots and tables.
Finally, chapter 6 summarizes and concludes the main findings of the thesis, discusses the limitations

and provides final remarks for future consideration.
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Chapter 2

Background and Related Work

In recent years, style understanding has become an active field of research in computer vision. In this
section, we summarize some of the key works in this area and place our work in context of the state of
the art. This is followed by discussing the existing methods which are closely related to the task of image
rendering and compositing within the context of sky background stylization and replacement. Finally
there is a brief explanation of the statistical and deep learned features used for understanding the realism
of image composites, which are used in our proposed method for sky-search and sky-replacement.

2.1 Representations for automatic style transfer

Style Transfer: Use of deep correlation features for style representation [3] is inspired by the seminal
work of Gatys et al. [7, 8] for texture synthesis and style transfer. Texture of an image as characterized by
deep correlation representations like Gram matrix of feature maps is shown to disentangle content and
style by capturing details like brush strokes, angular geometric shapes, patterns and transition between
colours [10]. This Gram matrix representation from different convolutional layers of a network pre-
trained for the task of object classification on the ImageNet [5] dataset is used for the task of style
transfer, that transfers a photo into an image with a style similar to a given target painting. Given a
photographic image P and a reference painting image I with the target style, Gatys et al. [7] propose to
adjust the output image P̂ in such a way that the Gram matrix (style features) of feature maps are similar
to those of I , while the content features (regular feature maps) of P̂ are similar to those of the original
input image P . To perform style transfer gradient descent is performed on the white noise initialized
image P̂ to match the style of the source image while preserving the content of the target image. See
Figure 2.1 for examples of output image after performing the aforementioned style transfer procedure.

The method described above [7] is computationally very expensive. A few works were proposed to
make it more efficient and fast. Johnson et al. [16] proposed perceptual loss functions for constructed
transformation networks. These are defined based on high level features from a loss network. The
perceptual loss functions are shown to capture image similarities more robustly, and the transformation
networks make the process of style transfer much more efficient. Later, Ulyanov et al. [39] proposed a
feed-forward convolutional neural network to shift the optimization step of the style transfer process to
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Figure 2.1: Examples of images that combine the content of a photograph with the style of several
well-known artworks. The original photograph A is used as the content image in all the examples. The
painting that provided the style for the respective generated image is shown in the bottom left corner of
each panel. (Gatys et al. [7])
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the learning stage, and this made style transfer much more light weight. They designed a new normal-
ization technique and a learning formulation to further improve the quality and diversity of stylization
[40]. The learnt networks described are efficient but are restricted to a single style only. To transfer
a specific style onto an image, a separate network has to be trained from scratch. Dumoulin et al. [6]
proposed a conditional instance normalization technique, and developed a generic network to capture
the properties of different image styles in a flexible manner. Further, Ruder et al. [29] extented the image
style transfer procedure to videos. In addition to simply performing style transfer on each video frame,
they introduced a temporal consistency loss and a multi-pass algorithm to make the video transforma-
tions results smooth. Tanno et al. [36] extended the style transfer network [16] to further learn multiple
artistic styles at the same time, and also reduced the computational requirement to develop a real-time
style transfer application on mobile devices. The style transfer performed using convolutional neural
networks is not semantics aware. To take semantics into account, Champandard [2] consider a seman-
tic map corresponding to the input image, such that a user can sketch a spatial layout associated with
semantic meanings, and following this the proposed system can synthesize a fine artwork with the spec-
ified style conforming both to the semantics and sketched layout. Despite neural style transfer achieving
amazing results, why these correlations between the feature maps from a pre-trained neural network can
capture style so well is unclear. Li et al. [21] proposed a novel interpretation to show how matching the
Gram matrix from feature maps is equivalent to minimizing the maximum mean discrepancy with the
second order polynomial kernel.

Lin and Maji [22] also evaluate the efficacy of deep texture representations on texture and scene
recognition benchmarks. While style transfer is still an active field of research, in our method we
leverage Gram Matrix features as a proxy measure for style similarity.

2.2 Supervised style classification

Additionally to style transfer, a few efforts have been made to use style representations in image style
analysis tasks like style classification, style search and style retrieval. Wang et al. [47] construct a style
representation and color representation for handbags, based on discovery of discriminative patches and
dominant color features respectively. The handbags are first classified into different style classes, and
further within each class, handbags of varied colors are discriminated. These style and color represen-
tations are used to measure the inter-class style similarity and intra-class color variations respectively.
Based on the Gestalt theory (which is a psychological study of how human visions organize the vi-
sual perception), Shen and Cheng [32] aim to improve the usability of local features in images of the
same content but in different styles, by proposing Gestalt feature points. It was demonstrated that these
Gestalt feature points give superior performance over the existing local features.

Karayev et al. [17] use many hand-crafted features and features extracted from deep CNNs pre-
trained for object recognition task to train linear classifiers in a supervised manner and evaluate recogni-
tion performance on three datasets, each with a different meaning of style categories. They showed that
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Figure 2.2: Content representations and style representations from a deep CNN (VGG-19 [33]) com-
puted across different layers. (Gatys et al. [7])

the deep features yield performance that is much better than the conventionally used hand-crafted fea-
tures in recognizing different image styles. Aesthetic classification and rating of photographic images
has also been explored in [23, 26] using attributes such as depth of field and exposure. Recent methods
on style-aware image retrieval and image inpainting [4, 11] use Siamese Networks [45] with a triplet
loss for learning style representations and to distentangle style from content. Our choice of triplet loss
and some design choices are inspired by success of [4], however the focus of their work is on supervised
style retrieval.

Deep Correlation Features: Recently, Chu and Wu [3] investigated the effectiveness of learned
deep correlation features for style classification of paintings and photographs. They use correlation
within and across different feature maps (outputs of different convolutional layers) of a pre-trained
CNN and train another shallow network on top of these features for dataset-specific style classification.
In addition to the Gram matrix based style representations [7], they investigate the performance of
various other correlations that are well defined in statistics theory.

VGG-19 [33] network is used which has been pre-trained on ImageNet[5] dataset for the task of
image classification. Filter responses are extracted from different layers of VGG-19. This network
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Figure 2.3: An illustration of the VGG-19 model [33] network architecture : conv means convolution,
FC means fully connected (Zheng et al. [52]).

consists of sixteen convolutional layers and three fully-connected layers. The receptive field at each
convolutional layer is fixed to 3 × 3 with a stride of 1 pixel. Spatial pooling is performed out by five
max-pooling or average-pooling layers, which follow the 2nd, 4th, 8th, 12th and 16th convolutional
layers. Max-pooling (or average-pooling) is performed over a 2 × 2 window, with a stride of 2. The
convolutional layers in the network are divided into five groups due to the presence of five pooling layers.
In [7], the convolutional layers described were named as ’conv1 1’, ’conv1 2’, ’conv2 1’, ’conv2 2’,
’conv3 1’, ’conv3 2’, ’conv4 1’, ’conv4 2’, and so on. For example, the ’conv2 1’ layer is the 3rd
convolutional layer that just follows the first pooling layer, see Figure 2.2, 2.3 and 4.1.

Gram Matrix Features: As introduced before in section 2.1, Gatys et al. [7] construct a style
representation based on correlations between feature maps (filter responses), which is used to transform
a photograph into an image with a particular target style. The style representations are correlations
represented by the Gram Matrix Gl ∈ RN l×N l

, where Gl
ij is the inner product between the vectorized

feature map i and j in layer l, i.e.

Gl
ij =

∑
k

F l
ikF

l
kj

, where F l
ik is the activation of the ith filter response at the position k in layer l. For example, the

’conv5 1’ layer of the VGG-19 [33] network model, there are 512 feature maps with both width and
height of each feature map as 14. Each feature map is then vectorized into 14× 14 = 196 dimensional
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vector. These 512 feature maps are stacked together to form F 5 and the resulting Gram Matrix is a
symmetric 512 × 512 dimensional matrix. Chu and Wu [3] use these Gram matrix features as style
vector representations which are then classified by an SVM classifer.

Figure 2.4: Figure 2 from [50]: Archetypes learned from the GanGogh collection and van Gogh’s paint-
ings. Each row represents one archetype. The leftmost column shows the texture representations, the
following columns the strongest contributions from individual images in order of descending contribu-
tion. Each image is labelled with its contribution to the archetype.

2.3 Automatic discovery of styles

Wynen et al. [50] propose an unsupervised learning method to automatically discover, summarize,
and manipulate artistic styles from large collections of paintings. They use archetypal analysis on deep
image representations (Gram Matrix features [7]) from a collection of artworks, to learn a dictionary of
archetypal styles, which are used to characterize a new image by local statistics of deep features. To
visualise what an archetype ‘looks like’, the authors in [50] synthesise a texture from an image filled
with random noise, using the style representation of the archetype. Figure 2.4 shows some examples,
with the synthesised archetypal textures in the left-most column and the three images next to them on
each row showing the individual images that made the strongest contribution to the archetype.

While similar in spirit of unsupervised learning, our work focuses on learning style representa-
tions/embeddings for retrieval and evaluates it across datasets with different meanings of style.
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2.4 Automatic sky-search and sky-replacement

Tao et al. [37] proposed an interactive search system using a set of semantic sky attributes (category,
layout, richness, horizon, etc.) and showed how it can be used for controllable sky replacement. How-
ever the sky segmentation and consequently horizon detection introduce errors in sky replacement. The
quality of the sky replacement procedure is measured by a simple geometric metric to score compati-
bility, and global color transfer is used to match the output image appearance. Tsai et al. [38] proposed
a data-driven sky search scheme based on semantic layout of the input image. To re-compose the styl-
ized sky with the original foreground naturally, an appearance transfer method is developed to match
statistics locally and semantically. However, the color transfer algorithm is linked with label matching
between the source and the target which adds both complexity and a limitation on the kind of source
images that can be used. Also, color transfer may be undesirable and may introduce artefacts in the
foreground regions. In contrast, we do not rely on similar sky replacement methods and also do not
need to use appearance transfer methods.

2.5 Realistic image composition

Much work has been done for realistic image composition [46] and for evaluating realism of
composites[44, 49]. Lalonde and Efros [19] propose an object insertion technique that searches for
objects that are consistent with the input photograph in terms of camera orientation, lighting, resolution,
etc. and uses feature based assessment of composite realism. Xue et al. [51] determine the key statistical
measures that influence the realism of a composite and then adjust these in a given query composite
automatically using a data-driven algorithm. In this work, we leverage the implicit correlation between
background and foreground regions in natural images for compatible sky-search that lead to more
realistic composites.

2.6 Image Feature Measures

In this section, we explain the underlying statistical and deep learned features used for understand-
ing the realism of image composites, which are used in our proposed method for sky-search and sky-
replacement.

2.6.1 Image Statistical Measures

The image pixels are first inversely Gamma corrected [35], before we compute the image statistics on
a given input image. Then we transform the image statistics in such a way that they are approximately
linear to human visual perception. Weber’s law is followed to convert luminance and saturation into log
domain, and CCT is defined by mired [24].
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Figure 2.5: Correlated Color Temperature (CCT) chart

Correlated Color Temperature (CCT): These capture the colour characteristics of light. CCT feature
vector gives a general indication of the apparent ”warmth” or ”coolness” of the light emitted by the
source. As was studied in [51], we use “mired” as the unit of CCT.

1mired = 106/K ,

where K is the Plankian color temperature in Kelvin, clipped in the range of [1500, 20000] that is
also the normal range of natural lighting. CCT is computed using the package Opt-Prop (using [43]).

Equation 2.1 gives the computation for CCT features for an RGB image

CCT = 449× n3 + 3525× n2 + 6823.3× n+ 5520.33 , (2.1)

where n = ((0.23881) × R + (0.25499) × G − (0.58291) × B)/((0.11109) × R − (0.85406) ×
G + (0.52289) × B) and R, G, B are the red, green, blue color intensity values at that particular pixel
location of the image respectively.

Luminance: Luminance is the amount of energy perceived by an observer from a light source. Similar
to [51], log2Y is used, where Y (normalized to [ε, 1.0]) is the luminance channel of xyY space, where
ε = 3.03 × 10−4 (corresponding to intensity 1 in a 0 − 255 grayscale image before inverse Gamma
correction is performed) and is used to avoid undefined log values. The unit of difference in log2

domain is a stop.

Saturation: It is the degree to which a pure color is dilated by white light. It is computed as log2S,
where S ∈ [ε, 1.0] is the saturation channel ofHSV space. HSV color space has a cylindrical geometry
Figure 2.6, with hue, their angular dimension, starting at the red primary at 0◦ passing through the green
primary at 120◦ and the blue primary at 240◦, and then wrapping back to red at 360◦. The central vertical
axis comprises the neutral, achromatic, or gray colors, ranging from black at lightness 0 or value 0, the
bottom, to white at lightness 1 or value 1, the top.

H: H is a circular value in [0.0, 1.0] ( or [0, 360]), the hue channel of HSV space.
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Figure 2.6: Top: HSV color cylinder; Bottom: Illumination features computed as a function of sun
zenith angle (∆φs), sun azimuth angle (θs) and a binary variable (vs) for sun visibility.

2.6.2 Illumination Features

Sun position & visibility: Approach worked on by [20]. Function of sun zenith angle (∆φs), sun
azimuth angle (θs) and a binary variable (vs) for sun visibility. This method estimates a probability
distribution over sun position in the sky (azimuth and zenith angles) and visibility using a combination
of weak cues (sky pixel intensities, cast shadows on ground, vertical surface shading) and a data-driven
prior. Apart from foreground similarity, images with illumination similar to the query would be better
candidates for sky replacement. Illumination I is given by:

I = {θs,∆φs, vs} (2.2)
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2.6.3 Pre-trained CNN Features:

Pre-trained CNN features: Pre-trained features from convolutional neural networks pre-trained on
large image datasets such as ImageNet [5] have been shown to perform well for image tasks in visual
understanding. These deep features implicitly learn the spatial layout and object semantics at the deeper
layers of the network when trained on large datasets. We use the output of FC7 (fully-connected) layer
(4096 dim.) as feature representation from VGG-19 [33] architecture trained on different datasets.

More details on how these features are used with respect to our sky-search and sky-replacement
procedure along with an extensive qualitative and quantitative analysis are given in chapter 3.
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Chapter 3

Data-driven Sky Search and Replacement

Figure 3.1: For a query image with a dull sky (left), examples of consistent (middle) and inconsistent
(right) sky replacements.

In this chapter, we describe in detail our method for automatic sky-search and sky-replacement. Our
approach is data-driven and centered around the idea of ‘compatible’ sky-search. Given a query image
with a problematic sky, our method first finds images with similar foregrounds and natural illumination.
It then creates candidate composites by replacing the query image sky with the retrieved image skies
and ranks the composites based on realism and diversity. The user is finally presented with the top-k
candidate composites as replacement outcomes without color transfer thereby retaining the natural color
composition of the foreground in the original image. We demonstrate the effectiveness of our method
with qualitative results and a comprehensive user study. Figure 3.2 summarizes the proposed system
with a block diagram. To summarize, this chapter presents our novel pipeline for compatible-search
based sky-replacement that is a useful alternative or prelude to automatic color transfer methods. We
describe our curated large database of outdoor images with interesting skies and evaluate the usefulness
of a large number of features for this tasks.

3.1 Database Collection

The database of 1246 images used with the proposed system consists of 415 Flickr images with
diverse skies (collected by [38]) and 831 outdoor images curated from the ADE20K Dataset[54].
ADE20K dataset consists of ∼ 22K images with 150 semantic categories like sky, road, grass. The

Project page : https://cvit.iiit.ac.in/research/projects/cvit-projects/findmeasky
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Figure 3.2: An overview of our sky-replacement pipeline. Candidate composites are created using
skies from database images with most similar foregrounds. Final composites are re-ranked to maximize
realism and diversity of the presented set.

images with sky category were first filtered to a set of ∼ 6K useful images for which the sky region
made > 40% of the total image. These images were manually rated between 1 to 5 for interestingness
and aesthetic appeal of the skies by two human raters and only the images with average scores higher
than 3 were added to the final database.

3.2 Proposed System

The motivation behind our sky replacement method is to find naturally consistent yet interesting
skies for a query image. Our system is based on the following hypothesis. Given two images, (i) if their
foreground regions are similar (in color, layout, and semantic makeup), and (ii) if the estimated natural
illumination (predicted positions of the sun in the sky) is similar, swapping their skies would lead to
highly realistic composites that wouldn’t need foreground color correction. This hypothesis is validated
with experiments (discussed later). We first curate a database of outdoor images with interesting and
aesthetically appealing skies along with their foreground masks. We represent each database image with
image features corresponding to its foreground region and illumination. Similarly, given a query image
(and its foreground mask), we compute its foreground features and natural illumination. For each query,
we retrieve the top-K nearest neighbor images from the database based on the L2 distance in feature
space and use the sky regions in these images as viable candidates for replacement. We evaluate all
candidate composites for realism and diversity and re-rank the candidates to provide most realistic yet
diverse alternatives to the query image. This procedure is outlined in Figure 3.2.
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3.2.1 Feature Description

3.2.1.1 Foreground Features

Color statistics: Xue et al. [51] studied the relation between the background and foreground regions for
realistic composition using various 2D statistical measures and identified correlated color temperature
(CCT), luminance, and saturation to be the most significant measures in determining realism of a com-
posite. We use this finding and represent the image foreground using histograms of these color statistics
computed at every pixel (using [43]).

Bag of Visual words and GIST: Hand-crafted features such as Bag of visual words (BoW) [34] and
GIST have been popularly used for measuring object-level and scene-level similarities between images.
For our task, BoVW features are computed by quantizing densely extracted local descriptors (like SIFT)
from foreground region of an image into a large visual vocabulary and building a normalized histogram
of these word occurrences. GIST features are designed to capture spatial envelope of the scene and use
histogram representation of gabor filter responses applied at multiple scales and orientations. We use
VLFeat library [42] to extract BoW and GIST features.

Pre-trained CNN features: Image descriptors computed using convolutional neural networks (CNNs)
pre-trained on large data such as ImageNet have proven to be very effective for a number of visual un-
derstanding tasks. The success of these features can be attributed to implicit learning of spatial layout
and object semantics at later layers of the network from very large datasets. We use two different pre-
trained networks, (i) VGG19 architecture [33] trained on ILSVRC-2012 (ImageNet) dataset, and (ii)
VGG16 architecture trained on Places205 dataset [53], and extract two variants of CNN features. With
both architectures, we use the output of FC7 (fully-connected) layer (4096 dim.) as feature represen-
tation. Between these two, ImageNet pre-trained CNN features performs better. We did not fine-tune
these networks for our task due to lack of labeled data.

3.2.1.2 Illumination Features

Sun position & visibility: Apart from foreground similarity, images with illumination similar to the
query would be better candidates for sky replacement. We compare the sun position in the sky estimated
using [20]. This method estimates a probability distribution over sun position in the sky (azimuth and
zenith angles) and visibility using a combination of weak cues (sky pixel intensities, cast shadows on
ground, vertical surface shading) and a data-driven prior.

3.2.2 Candidate search and composition

Candidate Search: The query and the candidates are compared using a combination of foreground
distance (dfg) and the sun position distance (dil) as follows,
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Figure 3.3: An overview of the sky replacement step.

d(Iq, Ic) = dfg(Iq, Ic) + αdil(Iq, Ic) (3.1)

Foreground features are compared using L2 distance. For comparing illumination, instead of com-
paring two probability distributions, we directly compute the angular distance (zenith and azimuth)
between the query and the candidate images. If the highest probability is below 0.5, the parameter α is
0, we do not consider the illumination distance as reliable and discard it otherwise α is 1. Distances are
normalized between 0 and 1.

Composition: The database images are stored with an alpha mask corresponding to the sky/foreground
segmentation. We assume the availability of alpha mask for query image also. Tsai et al. [38] explain an
automatic method to obtain accurate sky segmentation. Alternatively a semi-automatic method [28] can
be used to obtain a reliable alpha mask for the query image. Given the query and the candidate images
with corresponding segmentation masks, we first crop the tightest rectangle consisting only of the sky
pixels from the candidate image and scale it to match the size of the maximum bounding rectangle of the
query image. We then replace the query image sky patch by the scaled candidate sky patch as illustrated
in Figure 3.3 and perform laplacian pyramid based blending [1] along the seam to reduce composition
artifacts.

3.2.3 Feature Selection based on composite realism

Given a query, the ideal feature is the one that yields candidate images with most suitable skies
for replacement. Suitability of an image for this task is determined by perceived realism and aesthetic
appeal of the final composite. These properties are highly subjective and hence obtaining ground-
truth rankings/ratings for a large number of query images requires extensive human annotation effort.
Recently Zhu et al. [55] trained a discriminative model to predict realism of an image (RealismCNN).
While, this is not an accurate indicator of ‘goodness’ of a candidate for our task, it is a useful alternative
to validate usefulness of the features in absence of any ground-truth/baseline. We created a validation
set of 100 query images for this ablation study. For each query, we retrieved the top-100 candidates
using L2 distance of the five foreground features and also using a combination of foreground and sun
position distances. This leads to 100 composites per query per feature (100K composites per feature).
Using the predictive model explained above [55], we obtain a realism score for each composite.
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Figure 3.4: Ablation study : Running average of realism scores for composites sorted on feature dis-
tances

Figure 3.4 shows the running average of realism scores for incremental subsets of top-K composites
(10%, 20%, ..., 100%). As discussed before, our hypothesis is that using skies of images with most
similar foregrounds and/or illumination would lead to most realistic composites. If this hypothesis is
valid, with increase in value of K, average realism score of the top-K composites should be decreasing.
This trend can be observed for all features, validating our hypothesis. Among all foreground features,
color statistics feature yields the highest average realism scores, CNN feature is a close second (Ima-
geNet pre-trained). We study the effect of these two features combined with illumination feature (sun
positions) as per equation 1. While the average scores drop for combined illumination and color fea-
tures, these features are helpful to avoid physically implausible composites. But since the performance
is significantly lower we finally only use color statistic features for finding the suitable candidate skies.

3.2.4 Re-ranking for realism and diversity

While the candidates obtained using feature based distances are compatible and the resulting com-
posites are realistic, presenting all composites to the user is unnecessary and often undesirable. Many
composites can potentially be redundant if the replaced sky is similar to the query and/or to other com-
posites. We propose to select a small and diverse subset of highly realistic composites.

To achieve this, the composites are re-ranked based on the realism score (RealismCNN) and a diver-
sity measure. This is done by casting this problem to a max-sum diversification objective and optimizing
this objective using a facility dispersion algorithm as proposed by [12].
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For relevant and diverse retrieval, we wish to select a subset that maximizes total relevance (
∑
w)

and total dissimilarity (
∑
d). Consider U is the set of all candidate composites for a query image Iq

and S ⊆ U is the desired subset. The bi-criteria objective (f(S)) that achieves this can be given by
Equation 3.2 [12] (where λ > 0 is a trade-off parameter).

f(S) = (k − 1)
∑
u∈S

w(u) + 2λ
∑
u,v∈S

d(u, v) (3.2)

d′(u, v) = w(u) + w(v) + 2λd(u, v) (3.3)

To recast the objective as max-sum dispersion (that maximizes sum of all pairwise distances in the
subset S), [12] introduces a new pairwise distance given in Equation 3.3. For our task, we want the
composite to be realistic and the sky regions to have comparable aspect ratios hence, (i) relevance w for
each composite is a product of it’s min-max normalized realism score and the scale factor ( i.e scaling
applied to the candidate sky patch), and (ii) the dissimilarity d is the L2 distance between between two
sky regions in color feature space.

3.3 Results and Discussion

Our system is implemented in MATLAB with binary bindings for realism evaluation and blending.
Currently, the code is not optimized for performance and takes around a minute to produce 100 candi-
dates for a query image, of which, we show the top-4. To evaluate the effectiveness of our method, we
show qualitative results for a few query images and discuss findings of the user-study based evaluation
conducted for a larger query set.

Qualitative results: Figure 3.9 illustrates the 4 best composites for the query images on the top. The
query images shown include a variety of scene types and configurations such as aerial/ground shots,
presence/absence of foreground objects (person, tower), dull/interesting skies. It can be seen that for
all queries, the composites are diverse, natural looking, and aesthetically appealing. Figure 3.6 shows
the usefulness of the re-ranking algorithm. The images before re-ranking have similar backgrounds to
the input image. But after re-ranking we get images which are both diverse and relevant. Figure 3.5
compares the results from the given pipeline and the results given by [38]. The comparison clearly
shows that our method produce results which are similar in aesthetic appeal. Figure 3.7 depicts the
failure of the color transfer techniques used by [38] as the specularity and reflection from the roofs in
the houses is clearly visible. There is no need for such correction in our method as it chooses skies that
are already compatible with the foreground of the input image.
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Figure 3.5: Comparison with existing state of the art method, [38]. We tested our model on the same
input image, the results obtained are just as aesthetically appealing using a completely different pipeline.

min max mean median

Rq > allRc 0% 52% 12.72% 8.6%
anyRc ≥ Rq 48.48% 100% 87.32% 91.4%
anyRc >Rq 10.5% 81.67% 43.38% 43.31%

Table 3.1: Statistics on user preferences

User-study evaluation: To assess the performance of our replacement system, we conducted a user
study where we asked the users to rate groups of images based on their naturalness and aesthetic appeal.
Each group included a query image and top-3 composites in a randomized (and anonymous) fashion.
The user study was conducted for a set of 30 query groups and each group was rated by at least 40
participants. The participants belonged to age group 20 to 35 and had varying degrees of photography
and composition expertise, with a larger segment self-identifying as amateur or casual photographers.
Each image was rated between scores 1 to 5 which correspond to ‘very bad’, ‘bad’, ‘okay’, ‘good’,
and ‘very good’ descriptions. In absolute terms, the median score (across users and queries) for the
original image is 2.82 (below ‘okay’) while for the composites, it is 3.12 (above ‘okay’) indicating that
the composites were perceived to be equally or more attractive than the original images, Relatively,
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83.33% of the times at least one out of three composites received a rating strictly higher than the query
image indicating preferable aesthetic appeal of the composites. We also report statistics on the fraction
of times a query image Iq is rated >, =, < any of the composite images Ic in Table 3.1. It shows user
agreement for various cases, e.g. for the criteria any Rc > Rq (where Ri is rating of an image i), the
worst performing query set (column corresponding to min) 10.5% users agree, the best set has 81.67%
users in agreement, and on average over all query sets 43.38% users agree. The survey results clearly
indicate merit in our replacement system.

Figure 3.6: Example illustrating the efficacy of the re-ranking.

Figure 3.7: Failure of colour transfer methods in the in-house implementation of [38] as compared with
our method which chooses skies that are already compatible with the foreground.

Failure Cases: Figure 3.8 shows a few cases where our pipeline fails. Figure 3.8 (i) illustrates that
like any composition system, success of our system also assumes accurate segmentation and incorrect
segmentation can lead to inconsistent composites. In case of scenes with specular surfaces like in (ii–iii),
inconsistent reflection of the sky can lead to unnatural looking compositions.
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Figure 3.8: Failure cases, from left, (i) segmentation error, (ii) inconsistent sky reflection in water, (iii)
bright (sun) spot, (iv) better composition achieved with use of illumination map.

Figure 3.9: Example results of our diverse and compatible sky-replacement system
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3.4 Summary

In this chapter, we explained in detail our proposed data-driven method that given a query image
produces interesting and realistic composites with different skies without using color transfer as a post-
processing step. To achieve interesting replacements, we curated a new dataset of outdoor images
with interesting skies. To achieve realism without color transfer, we proposed a foreground similarity
hypothesis and validated it using a realism prediction model. We also experimented with a variety of
image based features for this task and observed color statistical features to be very effective. We further
showed a re-ranking technique to achieve both realism and diversity in the final subset presented to the
user. The effectiveness of our method is evaluated by conducting a thorough user study.

In the next chapter, we describe our proposed protocol for unsupervised learning of image style rep-
resentation using Gram Matrix (deep feature correlation map) as a proxy measure of stylistic similarity.
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Chapter 4

Unsupervised Image Style Embeddings for Retrieval and Recognition

In the previous chapter, we introduced and explained our proposed method for the task of color con-
sistent sky search and replacement, and demonstrated the effectiveness of our method with qualitative
results and a comprehensive user study. In this chapter, we examine the quality of understanding of
visual style which can be achieved by an unsupervised approach that does not rely on any categorical
labels of style. As mentioned in the previous chapters, for explicit style understanding previous work
tend to treat it as a supervised classification problem. Such methods generally use large datasets with
a fixed set of style labels to train a neural network for the style classification task and use the learned
feature maps for style representation. Such representations are efficient and effective for only a specific
task and have limitation in terms of generalization and the need for a manually curated large database
for training. Therefore, making the entire process expensive and inefficient as well as ill-suited for a
subjective attribute like artistic style where expert annotations are very limited. On the other hand, we
propose a protocol for unsupervised learning of style representation by leveraging a proxy measure that
provides a loose grouping of images. Our proxy measure is based on Gram matrix features popularized
by style transfer methods. These features capture the ‘look and feel’ of an image by measuring the cor-
relation among feature maps produced by different convolutional layers of a CNN and hence are a good
choice for discerning different visual styles. The details of which are further explained in this chapter
including dataset creating, learning protocol and evaluation results.

4.1 Dataset Creation

Instead of leveraging the style class labels specified for a dataset, we learn style representations in an
unsupervised manner using data clusters formed using Gram matrix [7, 8]. The details of the training
procedures are given later in this section. We first explain the clustering and data construction.

4.1.1 Training Data Construction

We describe the feature based clustering and triplet formulation which is used later for training a
Triplet Network for learning the style representations.
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Figure 4.1: Different feature layers of VGG-19 based CNN used for our experiments.

4.1.1.1 Gram Matrix features based clustering

Feature Extraction: As mentioned previously, we wish to learn a style representation without label
supervision and use similarity in Gram Matrix as a proxy for loose grouping of dataset images. We
use VGG-19 CNN architecture [33] pre-trained for object recognition and localization [30] tasks and
extract Gram matrix features as described in [7, 8]. An image is first passed through the CNN and the
activations for each layer in the network are computed (shown as Conv1 through Conv5 in Figure 4.1).
As explained in [8] each convolutional layer in the network acts as a non-linear filter bank, and their
activations in response to an input image form a set of filtered images referred to as feature maps.

A convolutional layer l with Nl distinct filters has Nl feature maps each of size Ml (Ml = Hl ×Wl;
where Hl and Wl are the height and width of the feature maps in layer l respectively). The responses in
layer l can be stored as a matrix F l ∈ RNl×Ml , where F l

i,j is the activation of the ith filter at position j
in layer l. Gram matrix features for layer l are computed as Gl

i,j =
∑

k F
l
i,kF

l
k,j . Gram Matrix features

Gl ∈ RNl×Nl are extracted for five layers (Conv1 through Conv5) of the VGG-19 network (shown as
G1 through G5 in Figure 4.1).

Training Images

VGG-19
Anchor

Negative (-)

Extract PCA reduced 
Gram matrix features from 

pre-trained CNN Clustering

K Positive 
Candidates

K Negative 
Candidates

Anchor Image

Triplet Construction Pre-process During Training

      Anchor

Random 
Selection

( a,    p,    n)

Figure 4.2: Triplet construction and selection process.

The resulting Gram Matrix feature vector captures information critical for style texture [9], but has
a very high dimensionality (typically of size ∼ 200k). To make the feature space more compact and
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Figure 4.3: Example triplets sampled with explained procedure in Section 4.1.1.2 (Cluster distance
based sampling). Notice poor diversity for K-FN based negative selection (last row).

computation more efficient, we apply Principal Component Analysis (PCA) to the Gram Matrix style
representations and reduce the number of dimensions to 4096 while preserving more than 99% of the
variance as shown in [8, 50].

Clustering: PCA reduced Gram Matrix features are computed for each image in the training set, fol-
lowed by soft K-means clustering. The optimal number of clusters for each dataset are determined using
elbow method as explained in [14]. Clustering on the reduced dimensional Gram Matrix features cre-
ates clusters with stylistically similar images coming together. We leverage this style-aware grouping to
construct triplets.

4.1.1.2 Triplet Formulation

Triplet loss tries to enforce a margin between anchor-positive distance and anchor-negative distance
in the learned embedding space. Before the training of the Siamese network begins, for every sample in
the training data as anchor,K positive andK negative candidates are chosen in an offline pre-processing
step as explained below. While training, for each anchor image in a mini-batch, a triplet is formed by
randomly selecting a positive and a negative sample for every iteration, fromK candidates chosen in the
offline process. This procedure is illustrated in Figure 4.2. This strategy shows a notable improvement
in performance than simply pre-selecting the triplets in an offline process.

For selecting positive candidates for an anchor, we pickK nearest neighbors (K-NN) in PCA reduced
Gram matrix space (withK = 40). Similarly, negative candidates can be selected by pickingK furthest
neighbors (K-FN). However, due to presence of outliers, this naı̈ve selection strategy results in negative
samples with little or no variation irrespective of the anchor image (see last row of Figure 4.3). For
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successful learning, we need to mine diverse and informative triplets. Hard negative mining can bring
more diversity and relevance to this process [15].

We implement the following two strategies for selecting a diverse pool of negative candidates, but
empirically observe the cluster distance based sampling to yield more diverse candidates across queries
and datasets.

Random sampling across clusters: Given N clusters of training data, for each anchor : (i) randomly
sample K images from each cluster except its own, (ii) from the initial set of (N − 1)K samples,
randomly select K samples as negative candidates.

Cluster distance based sampling: GivenN clusters of training data, compute a distance between every
pair of cluster centers, with Di

min being the nearest cluster distance and Di
max being the furthest cluster

distance for cluster i. Let γ denote a value between (0, 1). For an anchor belonging to cluster i, we
sample negative candidates as per Gaussian probability distribution with mean (µ) at γ × Di

min

Di
max

and
standard deviation (σ) as 2% of (Di

max −Di
min).

4.1.2 Training Protocol

We now explain the two training protocols used for style representation learning. The cluster labels
are used for learning the embedding by (i) minimizing a cross-entropy loss for cluster label classifica-
tion, and (ii) minimizing a triplet loss for maximizing the distances between stylistically similar and
dissimilar samples.

Training with cross-entropy loss: We train a CNN with VGG-19 architecture [33] augmented by a
256-dimensional bottleneck layer (shown in Figure 4.1) for 30 epochs and minimize cross-entropy loss
for multi-class classification. The use of bottleneck layer results in an improvement in performance for
style recognition and retrieval as shown in [4]. During this stage, we simply use the cluster ID for each
image as its class label.

Training with triplet loss: We train a three branch Siamese network similar to [45] with the same
network architecture as above for each branch and minimize a triplet loss similar to [31]. We initialize
the network branches with weights from the above protocol and further train the network by minimizing
the triplet loss for 50 more epochs. For training a Siamese Network with triplet loss we need triplets
(a, p, n) of anchor image a, positive image p (stylistically similar to anchor) and negative image n
(stylistically dissimilar) which are sampled as explained in section 4.1.1.2. The triplet loss is defined
as L(a, p, n) = max(0, [m + |f(a) − f(p)|2 − |f(a) − f(n)|2]), where m is a margin promoting
convergence. The network describes a function f(.) by minimizing the triplet loss defined in equation
above. Adam [18] optimization algorithm is used during training of both stages1.

1We will release the network models and training codes along with the related publication for ease of reproduction https:
// sidgairo18.github.io/style
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4.2 Datasets

To evaluate our learning protocol and representations across varied style definitions, we use various
datasets with diverse media and style categories. We introduce these datasets briefly here and additional
details are given in supplementary material.

Behance Artistic Media Dataset (BAM): This dataset by [48] consists of images from Behance2 - a
portfolio website for professional and commercial artists. The dataset is annotated in a semi-supervised
(human-in-the-loop) manner for 7 artistic medium categories (3D renderings, comics, pencil/graphite
sketches, pen ink, oil paintings, vector art, watercolor), and 4 emotion categories (happy, gloomy, peace-
ful, scary). We use a subset of BAM dataset with 121K images (sampled similar to Behance-Net-TT
110K set in [4]) balanced across media and emotional styles, and with a Train, Validation and Test split
as 80:5:15.

AVA Style Dataset: Introduced in [26, 17], AVA dataset comprises of 14 photographic style labels
on 14K images such as Complementary Colors, Duotones, HDR, Image Grain, Light On White, Long
Exposure, Macro, Motion Blur, Negative Image, Rule of Thirds, Shallow DOF, Silhouettes Soft Focus,
Vanishing Point. Train:Val:Test split is 85:5:10

Flickr: This dataset, introduced in [17] captures several different aspects of visual style in photographic
images, including photographic techniques (Macro, HDR), composition styles (Minimal, Geometric),
moods (Serene, Melancholy), genres (Vintage, Romantic, Horror), and types of scenes (Hazy, Sunny).
There are 20 visual styles available on 80,000 images. The Train:Val:Test split is 60:20:20, similar to
[17].

Wikipaintings: A dataset [17] of paintings annotated with historical art style labels, ranging from Re-
naissance to Modern Art. We select 25 different styles, and harvest a subset of 25,000 images balanced
in style labels. Train:Val:Test split is 85:5:10.

DeviantArt Dataset: DeviantArt3 is a website similar to Behance for amateur artists, with different
art style labels. We harvest a dataset of 6500 images from this website for Traditional Art and Digital
Art categories. These are further divided into Paintings, Drawings and Mixed Media leading to 5 style
classes. Train:Val:Test split is 85:5:10.

WallArt Dataset: Wall Art dataset is scraped by us from a home accessories marketplace website
Junique4. The site features handpicked wall art sets each of 2 or 3 artworks that go well together, selected
by their in-house curators. Each set is also categorized into one of 13 broader style/theme labels by
the curators such as, Country Living, Fashionista, Minimal Monochrome, Fine Art Photography, New
Romantic, Shades of Summer, Abstract & Colourful, etc. We mainly use this dataset for qualitative

2https://www.behance.net/
3https://www.deviantart.com/
4https://www.juniqe.com/wall-art/inspiration
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evaluation of retrieval due to the interesting 2-level hierarchy of style relevance (within each set and
within each theme).

4.3 Experiments and Results

Abbreviation Feature Dimension Loss/Training

GM-L Gram PCA 1 4096 Pretrained
GM-S Gram PCA 2 256 Pretrained
F×C Fusion×Content[17] 4000 Pretrained
FC2 Fully Connected[33] 4096 Pretrained
B-Tri Bottleneck 256 Triplet
B-CE Bottleneck 256 Cross-entropy

Table 4.1: Details of feature representations used for performance evaluation and comparison. Refer to
Figure 4.1 for depiction of these representations.

In this section, we evaluate performance of the style representations learned using our proposed ap-
proach against other known representations such as PCA-reduced Gram Matrix features and features of
[17] on datasets discussed in the previous section. Table 4.1 provides a summary list of these features
with abbreviations for brevity. We use these representations in two ways to establish their effectiveness,
(i) for retrieval tasks, to retrieve stylistically similar images in the nearest neighbor sense (ii) for recog-
nition tasks, where we train a softmax classifier on top of the learned representations for image style
recognition.

4.3.1 Retrieval Task

We use the learnt representation to perform retrieval of stylistically similar images on 6 datasets. To
evaluate the retrieval performance, we form query sets for each dataset by randomly sampling 10% of
the images from the test partition of each dataset (denoted by #Q in Table 4.2). For every query, we
sort the test split samples based on L2 distance in individual representation space and calculate Average
Precision (AP) using dataset specific class labels. The mean Average Precision (mAP) for each dataset
and feature representation is provided in Table 4.2. A Combined Dataset Score (CDS) is computed
for each feature, which is the weighted average (in terms of number of queries) of the mAP across
datasets. These results demonstrate that the proposed unsupervised learning protocol improves retrieval
performance across all but one dataset over pre-trained features. The triplet loss based representation
B-Tri does better than cross-entropy based representation B-CE over all datasets as expected, with B-CE
being the 3rd best overall. For Wall Art dataset, training was done using a subset of BAM samples due
to small size.

Since we do not use class labels for training but use 4096 dimensional PCA reduced Gram fea-
tures (GM-L) as proxy measure for clustering images, we were initially expecting the 256-dimensional
learned representation to at best do as well as GM-L representation. However, B-Tri shows notable
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Feat. Dim: ∼ 4096 Feat. Dim : 256

Dataset #Q Random F×C FC2 GM-L GM-S B-CE (Ours) B-Tri (Ours)

AVA Style 200 8.70 19.39 18.98 20.63 20.30 19.87 21.34
Flickr 2000 5.63 16.42 15.10 16.21 15.44 16.58 17.72

WikiPainting 250 4.56 15.72 15.64 16.99 15.20 17.10 19.22
BAM 1000 10.40 27.03 26.57 34.5 33.07 28.32 30.54

Deviant Art 100 21.33 35.51 32.82 36.00 35.12 38.80 40.17
WallArt 100 8.12 24.96 22.43 27.00 21.15 27.31 27.53

CDS (non-weighted) 9.78 23.17 21.92 25.22 23.38 24.66 26.09

CDS (weighted) 7.53 26.80 23.77 27.42 25.79 27.06 28.53

Table 4.2: mAPs computed for retrieval on different datasets and features. The learning procedure
(Section 4.1) produces a compact representation B-Tri (256-D) which achieves best performance on 5
out of 6 datasets and best overall CDS. #Q indicate number of query images and CDS indicate Combined
Dataset Score (both weighted and non-weighted).

Feat. Dim : ∼ 4096 Feat. Dim : 256

Dataset GM-L (All Conv) GM-L (Conv 5) F×C [17] FC2 B-Tri (Ours) B-CE (Ours) GM-S (All conv)

AVA Style 48.32 46.96 58.10 57.90 53.86 40.74 38.19
Flickr 40.47 39.25 38.80 33.60 42.15 36.58 35.80

WikiPainting 51.02 50.92 47.30 35.60 52.36 44.37 36.47
BAM 87.81 86.20 82.40 80.10 89.30 84.21 80.76

Deviant Art 56.77 55.39 53.20 51.78 59.74 52.06 49.03

Table 4.3: mAPs computed for recognition task on different datasets by training a softmax classifier
on top of the features. B-Tri (Ours) performs best on all but the AVA Style dataset, improving the
recognition mAP by at least 1.3.

improvement in mAP over GM-L. This improvement is the result of the max-margin nature of triplet
loss and diverse negative sampling, thus showing the effectiveness of the triplet training.

4.3.2 Recognition Task

Starting with different unsupervised representations shown in Figure 4.1, we train a softmax max
classifier on the training splits of all datasets and evaluate style classification performance on test splits.
The mean Average Precision calculated across all style labels for all datasets is given in Table 4.3. It can
be seen that the triplet loss based unsupervised representation (B-Tri) outperforms pre-trained feature
representations for all but the AVA Style dataset. This experiment shows effectiveness of the learned
representation for task-specific fine tuning when labels are available.

For AVA Style dataset the Fusion×Content features of [17] performs better. These features com-
bine activations of independently trained content classifier with Fusion features in outer product sense.
Karayev et al. [17] suggest that some style categories are inherently content-dependent, hence combin-
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ing content-classifier activations improves performance. Since labelled data training is not the main
focus of this work, we did not pursue this reasoning with our representations.

Also, the combined Gram Matrix features (All Conv) perform better than standalone layers(Conv1
to Conv5). For detailed information see the supplementary material.

4.3.3 Qualitative Results for Style based Search

Figure 5.1 shows the top 4 results for query images from different datasets. As discussed before,
style labels are often contextual and convey a limited meaning of style. This indicates that a low pre-
cision score does not necessarily imply poor quality of visual similarity. The retrieved results that are
highlighted by a black box don’t have the same style label as the query, despite obvious visual similarity.
For example, the first query (row1, left) belongs to style class ‘comic’ and retrieved results belong to the
classes ‘Pen Ink’, ‘Graphite’, ‘Pen Ink’, ‘Gloomy’. We also observe that some style classes are visually
more similar as compared to other classes. Figure 1.4 shows the t-SNE [41] visualisations of the learned
representations (B-CE and B-Tri) as compared with pre-trained Gram Matrix features and FC2 features.
This further strengthens the fact that triplet based learning improves the stylistic similarity (look and
feel wise) after training.

We provide more results and statistics such as confusion matrix per dataset for retrieval task, feature
visualizations, clustering performance, and additional qualitative results in chapter 5.
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Figure 4.4: Retrieval results using the best performing representation B-Tri for example queries from
different datasets. Images highlighted by black border have style labels different from query style labels
although they are visually similar.
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4.4 Summary

In this chapter, we described our proposed protocol for unsupervised learning of image style repre-
sentation using Gram Matrix (deep feature correlation map) as a proxy measure of stylistic similarity.
Since style is a context-dependent notion, we evaluated performance of the learned representation on a
number of datasets with very different definitions of style categorization. We showed that triplet loss
based training indeed learns an effective representation that outperforms traditional representations de-
spite being more compact. The sampling scheme introduced for diverse negative sample mining proves
useful for improved training. We observed that visual stylistic similarity or ‘look and feel’ notion of style
is not always correlated with style categorization and showed this both qualitatively and quantitatively.
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Chapter 5

Additional Results

This chapter contains additional results for the different experiments performed and detailed statistics
for the different datasets used.

5.1 Qualitative Results

In this section we present a qualitative analysis of our learnt style representation for the task of
retrieval across six datasets (Refer to section 4, Datasets in chapter 4).

The qualitative results further bring to light that our learnt representations and Gram Matrix features
do capture the look and feel of an image. Two images could be very similar looking but could have
different style labels in different style context.

Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 show results of nearest neighbor retrieval for example queries
from each dataset with triplet loss based representation (B-Tri). Since style labels are often contextual
and convey a limited meaning of style, a low precision score does not necessarily imply poor quality of
visual similarity. The retrieved results that are highlighted by a black bounding box don’t have the same
style label as the query, despite obvious visual similarity.
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Query Top Retrieved Results

 Vector Art                             3D Graphics                        Vector Art     3D Graphics                 3D Graphics  3D Graphics

             Scary                                 Pen Ink                          Pen Ink    Comic             Pen Ink         Pen Ink

          Peaceful                               Peaceful                         Peaceful                 Peaceful              Peaceful       Peaceful

            Oilpaint            Watercolor                           Oilpaint   Oilpaint              Watercolor   Oilpaint

          Happy             Watercolor                         Watercolor                  Oilpaint                             Oilpaint Watercolor

           Gloomy             Peaceful                       Peaceful                                    Peaceful                           Peaceful  Peaceful

Figure 5.1: Nearest Neighbour retrieval results for select queries from BAM subset test split. Notice
that for rows 1 and 2, the queries and neighbours are very similar looking but the labels do not match.
This indicates the lower mAP scores for retrieval using unsupervised methods. ‘Oil Paint’ and ‘Water
Colour’ are hard to differentiate, similarly ‘Gloomy’ and ‘Peaceful’
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Figure 5.2: Retrieval Results for Query and Top Neighbours Deviantart dataset.
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Query Top Retrieved Results

Light on White                   Rule of Thirds               Light on White             Light on White             Soft Focus                 Light on White

Light on White                       Duotones                 Shallow DOF                Duotones                     Image Grain                  Duotones

Light on White               Light on White             Light on White                Light on White          Soft Focus                         Light on White

Light on White                       Image Grain               Duotones                          Duotones           Light on White                   Shallow DOF

Macro                                      HDR                       Motion Blur                        Macro                            Macro                 Shallow DOF

Figure 5.3: Retrieval Results for Query and Top Neighbours AVA Style dataset.
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Figure 5.4: Retrieval Results for Query and Top Neighbours Wikipaintings Subset dataset.It is interest-
ing to see the retrieved results and their relevance with respect to the query image. Notice row 7 where,
‘Abstract Expressionism’ labelled query retrieves ‘Ukiyo-e’, ‘Cubism’ and ‘Pop Art’ paintings.
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Query Top Retrieved Results

Depth of Field                   Vintage                          Detailed                       Melancholy                 HDR                         HDR                            

Horror                                   Romantic                     Romantic                         Hazy                         Ethereal                      Serene

Noir                                  Melancholy                  Melancholy                     Long Exposure        Ethereal                     Bright

  Horror                                   Noir                                  Noir                         Ehereal                       Pastel                           Bokeh

Depth of Field                 Vintage                           HDR                         Melancholy                Romantic                   Romantic

Noir                                   Vintage                     Melancholy                      HDR                          Noir                           Horror

Figure 5.5: Retrieval Results for Query and Top Neighbours Flickr Test Set.
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Query Top Retrieved Results

Pastel Dreams                Abstract and Colorful    Fine Art Photography      Scandi Chic         Pastel Dreams            Fine Art Photography

Pastel Dreams                Pastel Dream         Minimal Monochrome         Fashionista           Minimal Monochrome     Minimal Monochrome

Pastel Dreams                 Bold and Cont.     Fine Art Photography    Abstract and Colourful    Bold and Cont.          Abstract and Colourful

Pastel Dreams             Abstract and Colourful  New Romantic        Pastel Dreams           Minimal Monochrome     Abstract and Colourful

Minimal Monochrome   Minimal Monochrome    Minimal Monochrome  Minimal Monochrome    Abstract and Colourful     Scandi Chic

Figure 5.6: Retrieval Results for Query and Top Neighbours WallArt dataset. The style themes for this
dataset have been manually curated by experts, the retrieved samples show similarity both in terms of
appearance and style themes.
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5.2 Confusion Matrix

Figures 5.7, 5.8, 5.9, 5.12, 5.10, 5.11 show class-wise confusion matrix for retrieval for each dataset.
It can be observed that style classes that are more visually similar as compared to other classes are
confused more.

Figure 5.7: Confusion Matrix for Top 100 retrievals for 1000 Query images on Behance Subset Test set
using learnt representations. Here we see the following pairs confusing with each other - ‘Watercolor’
with ‘Oilpainting’ since both are very colourful, ‘Graphite’ and ‘Pen Ink’ both are hand-drawn and dull,
and ‘3D Graphics’ with ‘Vectorart’.
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Figure 5.8: Confusion Matrix for Top 100 retrievals for 1000 Query images on Wikipaintings Subset
Test set using learnt representations.
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Figure 5.9: Confusion Matrix for Top 100 retrievals for 1000 Query images on Flickr Test set using
learnt representations.
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Figure 5.10: Confusion Matrix for Top 20 retrievals for 100 Query images on WallArt Test set using
learnt representations for 13 style themes.
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Figure 5.11: Confusion Matrix for Top 100 retrievals for 200 Query images on AVA Style Test set using
learnt representations.

50



Figure 5.12: Confusion Matrix for Top 50 retrievals for 100 Query images on Deviant Art Test set using
learnt representations for 5 labels.
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5.3 t-SNE Visualizations

Figures 5.13, 5.14, 5.15, 5.16, 5.17 show t-SNE [41] visualizations of BAM dataset images based on
following feature representations: FC2 features and PCA-reduced Gram features (both 4096 and 256
dimensional) computed from pre-trained VGG19, embeddings learned using our protocol. It can be
observed that using triplet loss (B-Tri) further reinforces the stylistic similarity in comparison to other
features.

Figure 5.13: t-SNE visualization on BAM dataset for FC2 pre-trainined features (4096-D) from VGG19.
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Figure 5.14: t-SNE visualization on BAM dataset for PCA-reduced Gram Matrix (4096-D) pre-trained
features from VGG19.
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Figure 5.15: t-SNE visualization on BAM dataset for PCA-reduced Gram Matrix (256-D) pre-trained
features from VGG19.
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Figure 5.16: t-SNE visualization on BAM dataset for B-CE (256-D) features learnt when training with
cross-entropy loss using cluster cluster id for each image as its class label.
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Figure 5.17: t-SNE visualization on BAM dataset for B-Tri (256-D) features learnt when training with
triplet loss. Notice that using triplet loss (B-Tri) further reinforces the stylistic similarity in comparison
to other features as can be seen from Figures 5.13, 5.14 and 5.15.
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5.4 Samples from clustering

Figure 5.18 shows randomly drawn images from different clusters formed using PCA reduced Gram
features for BAM dataset.

Figure 5.18: Each row shows examples drawn randomly from seven clusters, for clustering applied to
BAM [48] subset. It can be seen that clustering in Gram matrix space groups stylistically similar images
together.(Each row only contains samples from a single cluster)
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5.5 Dataset Details

Tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 provide details of number of images per class for each dataset
discussed in chapter 4.

Ava Style
Style Number of Images
Rule of Thirds 839
Silhouettes 1043
Complementary Colors 388
Shallow DOF 1819
Motion Blur 833
Macro 779
Duotones 1216
Vanishing Point 620
Light On White 1059
Negative Image 1326
HDR 735
Soft Focus 642
Long Exposure 1612
Image Grain 932

Table 5.1: Ava Style dataset (a subset of AVA dataset [26]) similar to [17] style categories and the
number of images in each category.

Deviant Art
Style Number of Images
Digital Art Mixed Media 1521
Digital Art Drawings & Paintings 1122
Traditional Art Drawings 1559
Traditional Art Mixed Media 1322
Traditional Art Paintings 627

Table 5.2: DeviantArt dataset style categories and the number of images in each category.
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Flickr
Style Number of Images
HDR 3994
Noir 3999
Sunny 399
Horror 4000
Long Exposure 3999
Detailed 4000
Vintange 4000
Melancholic 4000
Macro 4000
Minimal 4000
Ethereal 4000
Depth of Field 3998
Geometric Composition 4000
Texture 4000
Serene 4000
Hazy 4000
Romantic 4000
Bright 4000
Pastel 4000
Bokeh 4000

Table 5.3: Flickr dataset [17] style categories and the number of images in each category.

Wall Art
Style Number of Images
Country Living 20
Scandi Chic 40
Fashionista 107
Coastal Views 84
Young at Heart 124
Minimal Monochrome 9
Fine Art Photography 31
Pastel Dreams 179
New Romantic 111
Modern Dandy 107
Bold and Contemporary 21
Shades of Summer 94
Abstract and Colourful 13

Table 5.4: WallArt dataset style categories and the number of images in each category.
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Wikipaintings Subset
Style Number of Images
Realism 999
Pop Art 999
Post-Impressionism 999
Color Field Painting 1000
Ukiyo-e 998
Art Informel 969
Nave Art (Primitivism) 999
Baroque 997
Neoclassicism 998
Abstract Expressionism 996
Early Renaissance 1000
Abstract Art 998
Minimalism 993
Romanticism 996
Impressionism 1000
High Renaissance 998
Cubism 1000
Northern Renaissance 999
Expressionism 997
Mannerism (Late Renaissance) 999
Rococo 990
Symbolism 997
Art Nouveau (Modern) 999
Surrealism 1000
Magic Realism 991

Table 5.5: Wikipaintings Subset dataset, which is a subset of Wikipaintings dataset [17] style categories
and the number of images in each category as used for our experiments.
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Behance Style Subset
Style other bicycle cat tree bird dog building flower cars people Total

Watercolor 780 35 221 503 2190 1441 542 555 39 2560 8866
Pen Ink 559 85 152 121 3031 1860 258 59 57 2483 8665
Graphite 936 45 147 123 1540 1344 297 56 95 4259 8842
Comic 178 77 207 20 1534 2181 142 59 53 4361 8812

Vectorart 1936 74 100 29 1680 1243 689 52 106 2883 8792
Oilpaint 1188 15 110 602 977 1332 349 391 28 3757 8749

3d graphics 2697 149 25 165 415 525 1413 88 900 2455 8832
Happy 287 33 630 247 1918 1357 27 1681 2 2718 8900
Scary 779 21 141 266 1722 1579 89 397 7 3763 8764

Gloomy 945 61 51 1558 438 454 1745 27 49 3428 8756
Peaceful 1403 23 70 4100 625 364 695 581 61 900 8822

Table 5.6: Behance Style Subset datset style classes and the number of images in each category as used
for our experiments, which is a subset of BAM dataset [48] very similar to the Behance-Net-TT used in
[4].
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5.6 Additional Plots and Tables

Figures 5.19, 5.20 show bar plots for retrieval and recognition mAPs for different feature represen-
tations.

Table 5.7 shows the recognition performance (in terms of mAP) of gram matrices computed across
different layers (Conv1 to Conv5) of VGG19 [33] Networks for different datasets. A combination of
all the layers performs the best.
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AVA Style Flickr Wikpaintings BAM DeviantArt
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Figure 5.19: Dataset wide mAP scores for style based classification using different features. Notice that
B-Tri features clearly show improvement over other features across most datasets.

Dataset

0

10

20

30

40

50

BAM WallArt DeviantArt WikiPaintings Ava Style

Random

FxC

GM-L

GM-S

FC2

B-CE

B-Tri

Figure 5.20: Dataset wide mAP scores for retrieval performance using different features. Notice that
B-Tri and B-CE features clearly show improvement over other features across most datasets.
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Feat. Dim : ∼ 4096 Feat. Dim : 256

Dataset Conv 1 Conv 2 Conv 3 Conv 4 Conv 5 All Conv All Conv

AVA Style 30.20 36.40 41.68 44.74 46.96 48.32 38.19
Flickr 35.02 35.74 37.62 37.77 39.25 40.47 35.80

WikiPainting 25.36 34.35 39.81 44.70 50.92 51.02 36.47
BAM 48.68 66.59 83.03 83.81 86.20 87.81 80.76

Deviant Art 43.51 49.03 52.60 53.57 55.39 56.77 49.03

Table 5.7: mAPs for gram matrices computed for different layers (conv1-conv5) of VGG19 [33] Net-
work for recognition using a softmax classifier on different datasets and features. Evidently a combina-
tion of all convolutional layers performs best.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we explored and studied various image representations and their applications in under-
standing visual style, image retrieval, image recognition and background replacement.

We discuss our proposed data-driven method that given a query image produces interesting and re-
alistic composites with different skies without using color transfer as a post-processing step. To achieve
interesting replacements, we curated a new dataset of outdoor images with interesting skies. To achieve
realism without color transfer, we proposed a foreground similarity hypothesis and validated it using
a realism prediction model. We also experimented with a variety of image based features for this task
and observed color statistical features to be very effective. We further showed a re-ranking technique
to achieve both realism and diversity in the final subset presented to the user. The effectiveness of our
method is evaluated by conducting a thorough user study.

We describe in detail our proposed protocol for unsupervised learning of image style representation
using Gram Matrix (deep feature correlation map) as a proxy measure of stylistic similarity. Since style
is a context-dependent notion, we evaluated performance of the learned representation on a number
of datasets with very different definitions of style categorization. We showed that triplet loss based
training indeed learns an effective representation that outperforms traditional representations despite
being more compact. The sampling scheme introduced for diverse negative sample mining proves useful
for improved training. We observed that visual stylistic similarity or ‘look and feel’ notion of style is not
always correlated with style categorization and showed this both qualitatively and quantitatively. The
learned embeddings outperform other unsupervised representations for style-based image retrieval task
on six datasets that capture different meanings of style. We also show that by fine-tuning the learned
features with dataset-specific style labels, we obtain best results for image style recognition task on five
of the six datasets.
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6.2 Future Work

In future, the applications of our proposed unsupervised visual style representations learning protocol
may be explored with other proxy measures for style-aware grouping, e.g. semantic descriptions for
fashion image search. The unsupervised framework described in chapter 4 has been effective in learning
style representations well, and might prove useful in understanding hierarchies of styles or capturing
multiple notions of style.

With the recent advent of generative algorithms [13], the sky replacement procedure may be replaced
with a generative module to generate compatible skies for a given outdoor scene.
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